
1. M. Bravenboer, A. van Dam, K. Olmos, and E. Visser. Program transformation with scoped dynamic rewrite rules. FUIN (2006)
2. T. Ekman and G. Hedin. Modular name analysis for Java using JastAdd. GTTSE (2006)
3. U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars. Acta Informatica (1994)
4. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative specification of languages and IDEs. OOPSLA (2010)
5. G. Konat, L. Kats, G. Wachsmuth, and E. Visser. Language-parametric name resolution based on declarative name binding and scope rules. SLE (2012)
6. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in Stratego/XT 0.9. (2003)
7. L. Cardelli. Type Systems. ACM Computing Surveys (1996)

References

http://www.SPOOFAX.org

Gabriël D. P. Konat
g.d.p.konat@student.tudelft.nl

Vlad A. Vergu
v.a.vergu@tudelft.nl

Guido H. Wachsmuth
g.h.wachsmuth@tudelft.nl

Eelco Visser
e.visser@tudelft.nl

Lennart C. L. Kats
l.c.l.kats@tudelft.nl

THE SPOOFAX NAME BINDING LANGUAGE

Name Binding Language
The Spoofax Name Binding Language (NBL) [5] is a metalanguage for
declaratively specifying name binding and scope rules. Language engineers need
not be concerned with the mechanics of name binding algorithms, but can focus on
the name binding concepts of the language. NBL is integrated in the Spoofax
Language Workbench [4], but aspires to be a universal language for name binding,
as BNF is for syntax.

In NBL, name binding is specified in terms of namespaces, definition sites, use sites
and scopes. Naming rules are specified in terms of pattern matches on abstract
syntax tree nodes and support integration with the type system.

namespaces Class Method Field Variable

rules // Classes

 Class(x, _, _) :
 defines Class x of type Type(x)
 scopes Field, Method

 Type(x):
 refers to Class x

NBL supports declarative specification of scope composition and inheritance.
Resolution paths are statically composed from hierarchical scope references.

 Base(x) :
 refers to Class x
 imports Field from Class x {transitive}
 imports Method from Class x {transitive}

The integration with the type system allows full specification of name resolution
paths, while resolution path prioritization and fine-grained scoping control permits
correctness without code duplication.

 Field(t, x) :
 defines Field x of type t

 FieldAccess(exp, f) :
 refers to Field f in Class e
 where exp has type Type(e)

 Var(t, x, _) :
 defines Variable x of type t
 in subsequent scope

 VarRef(x) :
 refers to Variable x
 otherwise refers to Field x

Grammar

Name binding
specification

Type system
specification

 Dynamic semantics
specification

IDE

Language
parametric
algorithm

Compiler

Interpreter

NBL currently generates language specific implementations in Stratego of a
language-parametric algorithm for static name resolution, error checking and
contextual content completion.

Classical Approaches
Existing approaches for definition of name binding and scope, use
programmatic encodings of name resolution algorithms, which hide
binding and scope concepts. DSLs for compiler construction have focused
on reducing the overhead and accidental complexity of these
programmatic encodings. Some examples:

Reference attribute grammars

Rewriting strategies with Dynamic Rules [1]

Reference attribute grammar [3] (e.g. as supported by the JastAdd [2])
avoid carrying around environments by defining lookup attributes for
individual names, persisting the results as reference attributes pointing to
the definition of a name. However, these attribute definitions are still
concerned with defining lookup algorithms.

rename-top = alltd(rename)
rename :
 |[var x : srt]| -> |[var y : srt]|
 where y := <add-naming-key(|srt)> x
rename :
 |[define page x (farg1*) { elem1* }]| ->
 |[define page x (farg2*) { elem2* }]|
 where {| Rename
 : farg2* := <map(rename-page-arg)> farg1*
 ; elem2* := <rename-top> elem1*
 |}
rename = Rename
add-naming-key(|srt) : x -> y
 where y := x{<newname> x}
 ; rules (
 Rename : Var(x) -> Var(y)
 TypeOf : y -> srt
)

Inference Rules
The inference rules featured in mathematical language definitions encode
binding and scope by carrying around name binding environments.

Strategic rewriting as provided by the Stratego transformation language
[6], avoids the overhead of abstract syntax tree traversal by means of
generic traversal strategies, and uses scoped dynamic rewrite rules to
define mappings from names to unique names or types. However, the
resulting definitions are rather algorithmic and tangle multiple concerns.

localLookup(String)

localLookup(String)
Decl

Use

Block

Block

decl

Program

Decl

lookup(String)

lookup(String)

lookup(String)

eq lookup = …

eq lookup = …

eq lookup = …

eq Program.getBlock().lookup(String id) =
 null;

syn Block.localLookup(String id) {
 for (Decl d : getDecls()) {
 if (d.getID().equals(id))
 return d;
 }
 return null;
}

eq Block.getChild(int i).lookup(String id) {
 Decl d = localLookup(id);
 if (d != null) return d;
 return lookup(id);
}

syn Decl Use.decl = lookup(getID());
inh Decl Use.lookup(String);

15

Note that the assumption Γ ∫ A implies, inductively, that Γ is valid. That is, in the pro-
cess of deriving Γ ∫ A we must have derived Γ ∫ Q. Another requirement of this rule is
that the variable x must not be defined in Γ. We are careful to keep variables distinct in
environments, so that when Γ, x:A ∫ M : B has been derived, as in the assumption of
(Val Fun), we know that x cannot occur in dom(Γ).

Table 4. Rules for F1

The rules (Type Const) and (Type Arrow) construct types. The rule (Val x) extracts
an assumption from an environment: we use the notation Γ’, x:A, Γ”, rather informally,
to indicate that x:A occurs somewhere in the environment. The rule (Val Fun) gives the
type A→B to a function, provided that the function body receives the type B under the
assumption that the formal parameter has type A. Note how the environment changes
length in this rule. The rule (Val Appl) applies a function to an argument: the same type
A must appear twice when verifying the premises.

Table 5 shows a rather large derivation where all of the rules of F1 are used.

Table 5. A derivation in F1

(Env ) (Env x)

Γ ∫ A xÌdom(Γ)

 ∫ Q Γ, x:A ∫ Q

(Type Const) (Type Arrow)

Γ ∫ Q KÏBasic Γ ∫ A Γ ∫ B

Γ ∫ K Γ ∫ A→B

(Val x) (Val Fun) (Val Appl)

Γ’, x:A, Γ” ∫ Q Γ, x:A ∫ M : B Γ ∫ M : A→B Γ ∫ N : A

Γ’, x:A, Γ” ∫ x:A Γ ∫ λx:A.M : A→B Γ ∫ M N : B

 ∫ Q by (Env )  ∫ Q by (Env )  ∫ Q by (Env )  ∫ Q by (Env )

 ∫ K by (Type Const)  ∫ K by (Type Const)  ∫ K by (Type Const)  ∫ K by (Type Const)

 ∫ K→K by (Type Arrow)  ∫ K→K by (Type Arrow)

, y:K→K ∫ Q by (Env x) , y:K→K ∫ Q by (Env x)

, y:K→K ∫ K by (Type Const) , y:K→K ∫ K by (Type Const)

, y:K→K, z:K ∫ Q by (Env x) , y:K→K, z:K ∫ Q by (Env x)

, y:K→K, z:K ∫ y : K→K by (Val x) , y:K→K, z:K ∫ z : K by (Val x)

, y:K→K, z:K ∫ y(z) : K by (Val Appl)

, y:K→K ∫ λz:K.y(z) : K→K by (Val Fun)

Name Resolution

Interface("Env")

Method("add")

Type("Env") Param("id") Param("val")

Interface("Expr")

Method("eval")

Type("Int") Param("env")

Type("Env")

Class("Plus")

Base("Expr") Method("eval")

Param("env")

Type("Env")

Add

Call... Call

VarRef("r") "eval"

Field("l") Field("r")

Type("Expr") Type("Expr")

Name resolution is a program analysis that resolves names in abstract
syntax trees, resulting in (some representation of) a tree with references
from uses to definitions.

Definition and use site associations
need to be inferred and resolution
paths stored as annotations on the
abstract syntax trees for use in
subsequent analysis stages.

Abstract syntax trees communicate name scopes and associations less
intuitively than source code. The implementation of name binding is
typically much more intricate than manual examination in the presence of
visual structural cues.

Class("Plus", "Expr"
 , [Field(Type("Expr"), "l")
 , Field(Type("Expr"), "r")
 , Method(
 Type("Int")
 , "eval"
 , [Param(Type("Env"), "env")]
 , [Return(
 Add(
 Call(VarRef("l"), "eval",
 [VarRef("env")])
 , Call(VarRef("r"), "eval",
 [VarRef("env")])
))])])

Name Binding
Name binding comprises the association of uses of names --- such
as variables, methods and classes --- to their definitions. The
purpose is performing static name analysis and providing IDE
services such as error checking, code navigation and code
completion.

At source code level the structure of a program communicates the
associations and named scopes intuitively. For example, classes
open a scope for methods and fields, methods open a scope for
local variables.

 interface {
 Env add(string id, int val);
 }

 interface {
 int eval(env);
 }

 class Plus : {
 Expr l;
 Expr ;
 int eval(Env env) {
 return l.eval(env) + .eval(env);
 }
 }

Env

Env

refers to

r

r refers to

Expr

Expr

refers to

Navigation

Error checking

Code completion

Reference resolution permits IDE users to navigate code from
variable, method or class use-site to definition location. Name
analysis results in navigable associations.

Usage of names that require associations to missing or invisible
definitions are marked in the editor and reported as errors.

Inline code completion provides suggestions while editing.
The inline code completion service provides suggestions while
editing. Name analysis is required to determine the defined
entities that are applicable at the completion location.

 class Let : Exp {
 sting name;
 Expr t;
 Expr body;

 class add(Env env) {
 Env newEnv = env.add(nam,
 t.eval(env));
 return body.eval(newEnv);
 }
 }

 class Let : Exp {
 Expr r;
 int eval(Env env) {
 return l.e(env) + r.eval(env);
 }
 }

eval

http://www.SPOOFAX.org
http://www.SPOOFAX.org
http://www.SPOOFAX.org

