Incremental Execution of Name and Type Ana|y5|s

~

In'l'rOdUChon "1 class QuickSort {

2 public static void main(String[] a) {

%
Y
Language workbenches are tools that support the efficient definition, reuse and 3 System.out.println(new QS().Start(10)); Sh;—,"
composition of languages and integrated development environments (IDEs) [1]. We 4 } £ S
develop the Spoofax [2] Language Workbench, a workbench for developing textual g } g.-_ 3 ®
. : . 3 =
languages with full IDE support in Eclipse. class QS { . ;— cé)
IDEs provide a wide variety of language-specific editor services such as syntax 8 int[] number; = g- 3
highlighting, error marking, and code completion (see Figure 1) in realtime, while the 18 S LG ; S x @
Al)) , , public int Start(int sz) { v o Q
program is edited. These services require syntactic and semantic analyses of the program. 11 int aux01: & 8_
Thereby, timely availability of analysis results is essential for IDE responsiveness. 19 aux0@1 = this.Init(sz); s = g
13 System.out.println(9999); oS 2
Whole-program analyses do not scale because the size of the program determines the Q4 aux0l = siz - 1 5 §:
performance of such analyses. Incremental analysis reuses previous analysis results of 15 aux01 = thi ‘% c: 5
unchanged program parts and reanalyses only parts affected by changes. We focus on 16 return O; 3
incremental name and type analysis, because it is required by many editor services. 17}

-
\

~
/

/1\A /1\‘3 ¢ Name and Type Analysis
class C

int 1; The essence of name analysis is establishing relations between definitions that

bind a name and references that uses that name. Type analysis is concerned

int n() {1 int m; float with assigning a type to each expression in the program. Figure 2 on the left
¢ return mQ); shows three C# files and their name and type relations.
} float ™m() { int m(Q) {
1 .

return 1 + b F return 0; There are many dependencies between and within these relations, even
between files. For example, the type of the field access b.f; depends on the
} } type of b and the type of f, which is defined in another file.
float
, Whenever changes are made, relations need to be updated to reflect changes
name resolution float

-— flogt 1nt in the program. Complex dependency structures make incrementally updating
these relations non-trivial.

Figure 2. Three C# files with name
resolutions and type relations

type
_ float)
° T resotve cloee — name resolution task \
Incremental Execution: Tasks =
| resolve field f |w. dependency

Instead of immediately executing name and type calculations when encountered in the program, L
we create deferred analysis tasks [3] that are executed at a later time. A task is a (small) unit of ' ' o

computation that can depend on other tasks, and can only be executed if all its dependencies have

been executed.

From a program, a graph of name and type tasks, disconnected from the actual program, can be
extracted. The task graph that is derived from the C# program can be seen in Figure 3 on the right.

salpuapuadap
UM syspj ad£y pup swpp| "¢ a4nbiyg

The disconnection of tasks from the program means that we do not need to compare against the . . .
old program when changes occur. Instead, when a program changes, tasks are recollected and [calc type of mO) [calctpeof b P calc type of 0
compared against the old set of tasks. Tasks that change have to be re-executed, as well as tasks |
that depend on changed tasks. Unchanged tasks are not re-executed, making name and type
analysis incremental.

A calc type of f

.::y calc type of b.f

‘..] calc type of 1 + b.f

e
_

~
/

| B Parse B Collect Evaluate P f 'I'.
erformance Evaluation
“ 9 |
)
E 6 | To evaluate our CIppI'OCICh we hCIVG re-implemented the name and type CII']CII)’SiS Of the
’ ‘ HH H H H ‘ | H |H| ||I||| \ || l | A AR L AR WebDSL [4] language using tasks. WebDSL is a domain specific language for developing
. AN | AR LRI A | Il dynamic web applications.
5 -
B Parse M Collect I Evaluate We took the source code repository of Yellowgrass [5], an issue tracker written in WebDSL,
* and performed analysis for each revision in the repository. We measured performance for
w 3 o
Py both non-incremental (full, from scratch) and incremental analysis, which can be seen in
E Figure 4. It is clear that full analysis scales with the project size, but incremental analysis
1 |||| | My | | ‘ | | ‘ | I | does not. The correctness of incremental analysis was evaluated by comparing the results
. ol o ol sl | of the full analysis against the incremental analysis, which was equal for each revision.
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
. . Revision . The result is that incremental name and type analysis using tasks is fast enough for
Figure 4. Non-incremental (top), and incremental (bottom) analysis ; ierqctive usage in an IDE.
tfime over project revisions
\ Prol Y,

References

1. Sebastian Erdweg et al. The State of the Art in Language Workbenches. SLE (2013)

2. Lennart C. L. Kats et al. The Spoofax language workbench: rules for declarative specification of languages and IDEs.
OOPSLA (2010)

3. Guido H. Wachsmuth et al. A Language Independent Task Engine for Incremental Name and Type Analysis. SLE (2013)
4. Danny M. Groenewegen et al. WebDSL: a domain-specific language for dynamic web applications. OOPSLA (2008)
5. Yellowgrass source code repository: https://github.com/webdsl/yellowgrass

Gabriél D. P. Konat Eelco Visser Guido H. Wachsmuth
g.d.p.konat@tudelft.nl e.visser@tudelft.nl g.h.wachsmuth@tudelft.nl

lad A. Vergu anny M. Groenewegen o
v.\a/.vergﬁ\@t\t{deﬁt.nl I3.m.gz;enevfzgen@tudelth.n| MPJ/MOFAMQQ T U D e I ft De.lft

University of
Technology

http://www.SPOOFAX.org

