Scopes Describe Frames

A Uniform Model for Memory Layout in Dynamic Semantics
Casper Bach Poulsen’, Pierre Néron®, Andrew Tolmach®, Eelco Visser

“d
"TUDelft &y > @ Portland State

UNIVERSITY

Problem with Previous Approaches

Static Name Binding val x = 31; Dynamic Memory

Handled in a number of ways in semantic specifications: |yal y = >‘(+ 11; | Handledin a number of ways in semantic specifications:

- Lexical scope: type substitution, type environments Statically resolved - Lexical scope: substitution, environments, de Bruijn, HOAS
- Stateful references: reference types, store typings variable - Stateful references: Mutable stores, heaps

- Structured memory: class tables - Structured memory: Mutable values for records, objects

_ _ Dynamic lookup
Lack of uniform model Lack of uniform model of value

Our Solution

Scope Graphs [ESOP'15] val x<= 313 Frames and Heaps 1
Nodes of scope graphs represent three basic notions \{Val y = x + 11; J We propose frames as a language-independent model for | x7] 31
derived from the program abstract syntax tree: . dynamic memory. The model is based on these notions: F e fp
(: | x _ 1 <.
- Scopes (()) and edges (()+()) between scopes " - Frames (1) and links () between frames e
- Declarations (—J]) N - Heap: a frame graph X > v 142
- References ([—) il I y - Dynamic lookup (| =): static resolution path
- Static resolution paths (7>) Scoped AST and interpreted relative to the “current” frame Dy_namic |_00kUP
T | resolved scope using static
Uniform model graph Uniform model resolution path
Static Binding matches Dynamic Behavior
(letrec fac =) (class Lst {)
fun (n : Int) : Int { hd Int:)
if (n == 0) { P tl : Lst;
1 ‘\\ }\ y
} else { foc ::: 1 ‘* _ | 1 2 2
n x fac(n - 1) | fac™| cls var x = new Lst(); Lst hd,| 1 hd | ©
AN x =1, | T - f 1"
_r)) — x | o /] tL]| e tl |null
in fac(2)) : “\\ @ = new Lst();) - - .

2 2 2 L ’
fac fac = = A= hd Xj >

‘I n 2 || n 1 |/| n 0 -a
\\ \\ \\ P -~ LSt
N B S B AN
| / \ l‘\ / \ | \ : y : \
| n Ls

X tLX

Tl

Memory Invariants

Well-Bound Frame Well-Typed Frame Good Heap
Frame slots and links correspond to Types of values In frame slots match All frames are well-bound and well-typed
scope declarations and edges types of corresponding scope declarations

’l-h\ ’o-h\

4 \ 4
’ 12}
v ST ¢t ST
\ ’ \ ’
\-—, \-—,

Verification Specification Architecture

Type Soundness Principle Garbage Collection Language-Independent Language-Specific

v v

Evaluation preserves good heap property

Q S Well- Well- e
Eval % COPES Boundness Typedness
Good Heap " e\, Good Heap |
O

Unreferenced || € A
© Frames P Dynamic Semantics —

Lemma (Safe Removal). 2 |

Theorem (Type Soundness). For a good heap X =A u B,
For a well-bound and well-typed program If nothing in B is referenced from A, % Language-
in a good heap, then A is a good heap O Independent Type Soundness -
evaluation gives a well-typed value and good heap (B can be safely garbage collected). o Lemmas

