
Base Value Attribute

Bidirectional Relation

Derived Value Attribute

Derived Value
Bidirectional Relation

Calculation Strategy Selection

Assignment.parent			->	submissions.parent
Submission.parent			->	deadline
Submission.children	->	grade
Submission.grade				->	pass
Submission.grade				->	parent.grade
Submission.pass					->	parent.grade
Submission.pass					->	assignment.passPerc
Submission.grade				->	assignment.avgGrade

entity	Assignment	(eventual)	{
		name					:	String	
		question	:	String?
		deadline	:	Datetime?
		minimum		:	Float
		avgGrade	:	Float?				=	avg(submissions.grade)
		passPerc	:	Float?				=	count(submissions.filter(x=>x.pass)	/	count(submissions)
}

entity	Student	{
		name					:	String
}

entity	Submission	(incremental)	{
		name					:	String				=	assignment.name	+	"	"	+	student.name								(on-demand)
		answer			:	String?
		deadline	:	Datetime?	=	assignment.deadline	<+	parent.deadline						(default)
		finished	:	Datetime?
		onTime			:	Boolean			=	finished	<=	deadline	<+	true
		grade				:	Float?				=	if(conj(children.pass))	avg(children.grade)	(default)
		pass					:	Boolean			=	grade	>=	assignment.minimum	&&	onTime	<+	false
}

relation	Submission.student				1	<->	*	Student.submissions
relation	Submission.assignment	1	<->	*	Assignment.submissions
relation	Assignment.parent					?	<->	*	Assignment.children

relation	Submission.parent					?	=	
		assignment.parent.submissions.find(x	=>	x.student	==	student)
																																	<->	*	Submission.children

Example IceDust 2 Specification

Example Data

IceDust 2: Composition of Calculation Strategies
Daco C. Harkes and Eelco Visser

Delft University of Technology, The Netherlands
{d.c.harkes, e.visser}@tudelft.nl

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
deadline = 13-1-’17
avgGrade = …
passPerc = …

exam : Assign
name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

examAlice : Sub
name = …
answer = “Good”
deadline = …
finished = 7-1-’17
onTime = …
grade = 7.0
pass = …

labAlice : Sub
name = …
answer = “Great”
deadline = …
finished = 3-1-’17
onTime = …
grade = 8.0
pass = …

labBob : Sub
name = …
answer = “Perfect”
deadline = …
finished = 28-1-’17
onTime = …
grade = 10.0
pass = …

examBob : Sub
name = …
answer = “Bad”
deadline = …
finished=7-1-’17
onTime = …
grade = 3.0
pass = …

Calculation Strategies

w rcalc

w calc r

w
calc

r

on-demand calculation

incremental calculation

eventual calculation

HTTP request
HTTP response
flag dirty

w write to base value
ar read derived value
acalc calc. derived val.

Declarative Data Modeling
Derived values are values calculated from base values. A key concern in
implementing systems with derived values is minimizing the computational
effort that is spent to re-compute derived values after updates to base
values. A key concern in modeling systems with derived values is
minimizing the programming effort to realize such minimal computations.

IceDust 2 is a data modeling language that supports derived values. A
specification consists of entities, (derived) attributes, and (derived)
bidirectional relations between entities. To minimize programming effort,
calculation strategies can be selected per field (attribute or relation). The
type system checks the soundness of the composition of these strategies.

IceDust 2 provides three strategies for calculating the derived values: on-
demand, incremental and eventual. The distinction between these
strategies is when derived values are calculated:

Bidirectional Relations

Derived Relations
Derived values can be expressed with views in relational databases, but
they do not provide multiplicity bounds. Derived values can also be
expressed with expressions in incremental or reactive programming, but
require significant boilerplate to encode bidirectional derived values.

Derived relations are specified as expressions in IceDust 2, this provides
multiplicity bounds. Bidirectionality is provided by maintaining inverses.

children

children children

submissions submissions

Sound Composition of Calculation Strategies

Harkes, D. C., Visser, E.: IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition. ECOOP (2017)
Harkes, D. C., Groenewegen, D. M., Visser, E.: IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs. ECOOP (2016)
Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014)

and Multiplicity Bounds on Derived Bidirectional Relations

Submission
		aboveAvg	:	Boolean	=	grade	>=	assignment.avgGrade	<+	false	(incremental)

: Assignment
~ [1,1]
↑ base-value

: Float
~ [0,1]
↑ incremental

: Float
~ [0,1]
↑ eventual

: Boolean
~ [0,1]
↑ eventual

: Boolean
~ [1,1]
↑ base-val

: Boolean
~ [1,1]
↑ eventual

: Boolean
~ [1,1]

↑ incremental

e1 >= e2 ↑ s1 ⊔ s2

e1 ↑ s1 e2 ↑ s2

base-value

incremental

on-demand eventual

on-demand eventual

e . f ↑ s1 ⊔ s2

e ↑ s1 def(f) ↑ s2

Calculation strategies should retain
correctness and time complexity
under composition. For example a
read of an incremental value is O(1),
as such it cannot reference an on-
demand value, as it would have to
check whether it changed.

For sound composition of calculation
strategies, fields with a specified
calculation strategy may only depend
on fields with the same or a stronger
calculation strategy. The grey box
below to the right shows the lattice of
calculation strategies, lower is stronger.

Checking composition of calculation
strategies is orthogonal to checking
types and multiplicities in IceDust 2.
The left grey box shows two of the
rules for composition checking. The
example below will give an error as
aboveAvg references avgGrade.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

A B1 1
b a

a1.setB(b2)

A B1 *
b as

a1.setB(b2)

A B* 1
bs a

a1.addToBs(b2)

A B* *
bs as

a1.addToBs(b2)

a1 b1

a2 b2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

dynamic
multiplicity

static
multiplicity

entity
object

reference
set / add

remove

When updating bidirectional relations, both multiplicity and
bidirectionality have to be preserved. Multiplicities guide
bidirectional updates in IceDust 2. For example executing
lab.addToChildren(exam) implicitly removes math as parent
from exam 10, as exam can at most have one parent. It is
identical to executing exam.setParent(lab) 7.

Derived Bidirectional Relations
Updating derived values might lead to bidirectionality maintenance, which in
turn can lead again to updating derived values. For example when executing
exam.setParent(lab), examAlice.parent and examBob.parent get updated.
This causes the deadlines of those objects to be updated. Moreover,
mathAlice.children, labAlice.children, mathBob.children, and labBob.children
are also updated, which triggers re-execution of the grade for these objects.

fixpoint

also updates old and new
submissions.parent.children

Updating derived values and maintaining bidirectionality is recursive, and is
executed until a fixpoint is reached. Updates for derived values are triggered
via data-flow paths. A subset of the data-flow paths of the example
specification is shown above.

The math course consists of a lab
and an exam. The minimum to pass
the course is a 6, but for the lab and
exam a 5 suffices. The deadline for
the course is January 13th, 2017.

Alice passes the course, her grades are
sufficient, and the lab is handed in on
time. Bob’s exam grade is insufficient.
Bob’s lab is late, but he received a
personal deadline for the course.

Note that the parent-children relation
for submissions is derived. And that
deadlines recursively flow down the
submission-tree while grades get
recursively averaged up the tree.

object

reference
derived reference
bidirectional relation (2 references)

mathBob : Sub
name = …
deadline=1-2-’17
grade = …
pass = …

mathAlice : Sub
name = …
deadline = …
grade = …
pass = …

