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Problems in web development
● Loose coupling of languages
● No static checking available
● Boilerplate code
● Low expressivity
● Repetition

WebDSL solutions
● Integrated domain-specific sub-languages
● Language concepts for: data models, user 
   interface, access control, workflow
● Generates Java or Python application
● Order of magnitude reduction
   in application code
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Data Models
● Simple and domain-specific value types (::)
● Composite (<>) and referential (->) associations
● Derived CRUD pages 

Workflow
● High-level business process descriptions
● Specifies actors (who), user interface (view), actions (do)

Generated from workflow
● Task lists
● Status pages
● Navigation

procedure meeting(p : ProgressMeeting) { 
  process { 
    (writeEmployeeView(p) and writeManagerView(p)); 
    repeat { 
      editReport(p); 
      (approveReport(p) xor commentReport(p)) 
    } until finalizeReport(p) 
  }
}

procedure commentReport(p : ProgressMeeting) {
  who { principal = p.employee }
  view {
    derive procedurePage from p 
       for (view(employee),
            view(report), 
            commments)
  }
  do { email(commentNotification(p)); }
}

User Interface
● Data presentation
● Markup for structuring pages
● Data entry

Data Manipulation
● Forms with type inferred input elements
● Action definitions with procedural code
● Actions invoked by form button or link
● Control of navigation

define page commentReport(p:ProgressMeeting){
  main()
  define body(){
  header{"Comment report" output(p.employee)}
  form{
    table{
      row{"Employee: " output(p.employee)}
      row{"Report: "   output(p.report)}
      row{"Comments: " input(p.comments)}
    }
    action("Submit",submit())
    action submit(){
      return home();
    }
  }
}

Access Control
● Rules for: page access, template access, ...
● Separate concern
● Links to inaccessible pages are hidden
● Rules can be combined into policies

principal is User with credentials username, 
                                   password
access control rules
  rule page editReport(p:ProgressMeeting){
    principal = p.employee.manager
  }
  rule page approveReport(p:ProgressMeeting){
    principal = p.employee
  }
  rule page commentReport(p:ProgressMeeting){
    principal = p.employee
  }
  rule page finalizeReport(p:ProgressMeeting){
    principal = p.employee.manager
  }

entity User {
  username  :: String (id)
  password  :: Secret
  name      :: String
  manager   -> User
  employees -> Set<User>
  isAdmin   :: Bool
}
entity ProgressMeeting {
  employee     -> User
  employeeView :: Text
  managerView  :: Text
  report       :: Text
  approved     :: Bool
  comment      :: Text
}


