
http://www.webdsl.org

Core WebDSL

Core Data Model Core User Interface

Base WebDSL

Data Model User Interface

WebDSL + Access Control

Data Model User Interface Access Control

Procedural WebWorkFlow

Data Model User Interface Access
Control

Procedure
Events

Java/Python Web Application

WebWorkFlow

Data Model User
Interface

Access
Control

Procedure
Events Workflow

Danny M. Groenewegen, Zef Hemel, Lennart C.L. Kats, Eelco Visser

References
E. Visser. WebDSL: A case study in domain-specific language engineering. GTTSE (2008)
Z. Hemel, L.C.L. Kats, and E. Visser. Code Generation by Model Transformation. ICMT (2008)
E. Visser, DSLs for the Web (talk). OOPSLA (2008)
L.C.L. Kats, M. Bravenboer, and E. Visser. Mixing Source and Bytecode, a Case for Compilation by Normalization. OOPSLA (2008)
D. Groenewegen and E. Visser. Declarative access control for WebDSL: Combining language integration and separation of concerns. ICWE (2008)
Z. Hemel, R. Verhaaf, and E. Visser. Webworkflow: An object-oriented workflow modeling language for web applications. MODELS (2008)

Problems in web development
● Loose coupling of languages
● No static checking available
● Boilerplate code
● Low expressivity
● Repetition

WebDSL solutions
● Integrated domain-specific sub-languages
● Language concepts for: data models, user
 interface, access control, workflow
● Generates Java or Python application
● Order of magnitude reduction
 in application code

A Domain-Specific Language
for Dynamic Web Applications

This research was supported by NWO/JACQUARD project
638.001.610, MoDSE: Model-Driven Software Evolution, and
612.063.512, TFA: Transformations for Abstractions

Data Models
● Simple and domain-specific value types (::)
● Composite (<>) and referential (->) associations
● Derived CRUD pages

Workflow
● High-level business process descriptions
● Specifies actors (who), user interface (view), actions (do)

Generated from workflow
● Task lists
● Status pages
● Navigation

procedure meeting(p : ProgressMeeting) {
 process {
 (writeEmployeeView(p) and writeManagerView(p));
 repeat {
 editReport(p);
 (approveReport(p) xor commentReport(p))
 } until finalizeReport(p)
 }
}

procedure commentReport(p : ProgressMeeting) {
 who { principal = p.employee }
 view {
 derive procedurePage from p
 for (view(employee),
 view(report),
 commments)
 }
 do { email(commentNotification(p)); }
}

User Interface
● Data presentation
● Markup for structuring pages
● Data entry

Data Manipulation
● Forms with type inferred input elements
● Action definitions with procedural code
● Actions invoked by form button or link
● Control of navigation

define page commentReport(p:ProgressMeeting){
 main()
 define body(){
 header{"Comment report" output(p.employee)}
 form{
 table{
 row{"Employee: " output(p.employee)}
 row{"Report: " output(p.report)}
 row{"Comments: " input(p.comments)}
 }
 action("Submit",submit())
 action submit(){
 return home();
 }
 }
}

Access Control
● Rules for: page access, template access, ...
● Separate concern
● Links to inaccessible pages are hidden
● Rules can be combined into policies

principal is User with credentials username,
 password
access control rules
 rule page editReport(p:ProgressMeeting){
 principal = p.employee.manager
 }
 rule page approveReport(p:ProgressMeeting){
 principal = p.employee
 }
 rule page commentReport(p:ProgressMeeting){
 principal = p.employee
 }
 rule page finalizeReport(p:ProgressMeeting){
 principal = p.employee.manager
 }

entity User {
 username :: String (id)
 password :: Secret
 name :: String
 manager -> User
 employees -> Set<User>
 isAdmin :: Bool
}
entity ProgressMeeting {
 employee -> User
 employeeView :: Text
 managerView :: Text
 report :: Text
 approved :: Bool
 comment :: Text
}

