Declarative Specification and Incremental
Execution of Name and Type Analysis

N
|nfr0ducﬁ0n 1class QuickSort {
2 public static void main(String[] a) {
Language workbenches are tools that support the efficient definition, reuse 3 System.out.println(new QS().Start(10));
and composition of languages and integrated development environments 4 }
(IDEs) [1]. We develop the Spoofax [2] Language Workbench, a workbench 5 }
for developing textual languages with full IDE support in Eclipse. 6
7class QS {
IDEs provide a wide variety of language-specific editor services such as 8 1int [] | number ;
syntax highlighting, error marking, and code completion (see Figure 1) in 9 1nt size,; _
realtime, while the program is edited. These services require syntactic and 10 pul_allc int Start(int sz) {
semantic analyses of the program. Thereby, timely availability of analysis - int auxel; .
results is essential for IDE responsiveness. - aux0l = this.Init(sz);
13 System.out.println(9999);
Whole-program analyses do not scale because the size of the program Q4 :3?81 B i‘ﬁ - 1
determines the performance of such analyses. Incremental analysis reuses 16 return_G)' |
previous analysis results of unchanged program parts and reanalyses only 17 3 '
parts affected by changes. We focus on incremental name and type
analysis, because it is required by many editor services. Figure 1. Source code editor in Spoofax with syntax highlighting, error
_ marking, and code completion editor services p

-

Name and Type Analysis

The essence of name analysis is establishing relations
class C : { int 1; between definitions that bind a name and references that
uses that name. Type analysis is concerned with assigning

int n() { int m; float a type to each expression in the program. Figure 2 on the
(X return m left shows three C# files and their name and type relations.
1 Float O] int m() { | o

class { class {

e~

1 return 1 + return 0: There are many dependencies between and within these
relations, even between files. For example, the type of the
} } field access b. f; depends on the type of b and the type of
float f, which is defined in another file.
name resolution float ' Whenever changes are made, relations need to be
- float Lnt

updated to reflect changes in the program. Complex
type dependency structures make incrementally updating these

float relations non-trivial.
N Figure 2. Three C# files with name resolution and type relations)
I I E o T k name resolution task A
® B - resolve class A resolve class B
ncremental Execution: lasks .:
-yt resolve method m w| resolve field b
Instead of |mr.ned|ate|y executing name and type calculc!hons when esotve Field 7w, dependency
encountered in the program, we create deferred analysis tasks [3] that are AT
executed at a later time. A task is a unit of computation that can depend on
other tasks, and can only be executed if all dependencies have been
executed.
From a program, a graph of name and type tasks can be extracted which is
not connected to the program any more. The task graph that is derived from
the CH# programs can be seen in Figure 3 on the right.
This disconnection of tasks from the program means that we do not need to -. N :
. calc type of m(Q) " calc type of b . calc type of 0
compare against the old program when changes occur. Instead, when a file
changes, tasks are recollected and compared against the old set of tasks. ¥ calc type of ¥
Tasks that change have to be re-executed, as well as tasks that depend on “w| calc type of b.f
chaTged tasks. Unclhcmged tasks are not re-executed, making name and type ... calc type of T+ b.f
analysis incremental.
4 Figure 3. Name and type tasks with dependencies
_ /
4 N
pinding rules Fype rules Declarative Specification
Class(c, _) : IntLit(_) : IntType()
defines Class c . True() - BoolType() Tasks take care of the incremental execution of name and
scopes Field, Function False() : BoolType() i .) .
type analysis, this shifts the problem to collecting those
Add(x, y) : IntType() tasks. We collect tasks automatically by specifying name
FieldDef(t, f) : where x : X-ty di lvsis declarativel
defines Field T of type t and y @ y-ty and type analysis deciaratively.
and X - ty == IntType()
FieldAccess(exp, f) : else error "expected integer" on Xx-ty o -
s, and y.ty —= IneType() The Name B.lndlng Lar\g}Jage (NaB!.) [4] is a metalanguage
where exp has type t else error "expected integer" on x-ty for declaratively specifying name binding and scope rules
in terms of definitions, references, namespaces, scopes and
VarRef(v) : t . :
varDef(t, v,) : here defirition of v : t imports. The. Type Sys.ter.n language (TS) is a metalanguage
defines variable v of type t for declaratively specifying the type system.
1n subsequent scope Assign(exp, val) : exp-ty
h : -t
varRef(r) : gngre \e,ﬁ : \e/ﬁ-tz Both languages use rules that pattern match the abstract
~ refers to Variable r and exp-ty == val-ty syntax tree and assign name and type concepts to the
otherwise refers to Field r else error "type mismatch" on val-ty program by constructing tasks. See Figures 4 and 5 for
Figure 4. Fragment of C# name binding Figure 5. Fragment of C# type system example p.rogrc.ums in NaBL and TS, re.spectively. Using
specification in the Name Binding Language specification in the Type System language these specifications, tasks are automatically collected.
_ /
~
15
ReSUI'I's B Parse [Collect Evaluate
12 |
_ @ 9
To evaluate our approach we have re-implemented the name and 0
. . . £ 6
type analysis of the WebDSL [5] language using the outlined - | ”” ||| || " " ||||| || || N ‘ H ‘ ‘ ‘ m ‘
approach. WebDSL is a domain specific language for developing ‘“ M ‘ ” “‘
dynamic web applications.
Revision
We took the source code repository of Yellowgrass [6], an issue Figure 6. Full, non-incremental analysis time over project revisions
tracker written in WebDSL, and performed analysis for each revision
in the repository. We measured performance for both full and .
incremental analysis, which can be seen in Figures 6 and 7. It is clear M Parse M Collect [V Evaluate
that full analysis scales with the project size, but incremental analysis Y
does not. The correctness of incremental analysis was evaluated by 3 °
comparing the results of the full analysis against the incremental =2 | | | I| || || |
analysis, which was equal for each revision. 1 |.I|.|...|..|| ‘ IIJI.‘I“‘ J |L||.| I.‘I|.|||| FrqMRRA AT |I|I 1 h ARG N1 OF ¥ I
. ° 140 160 180 200 220 240 260 280 300 320 340
The result is that incremental name and type analysis using tasks is i
fast enough for interactive usage in an IDE. : . . .
. Figure 7. Incremental analysis time over project revisions)

References

1. Sebastian Erdweg et al. The State of the Art in Language Workbenches. SLE (2013)
2. Lennart C. L. Kats et al. The Spoofax language workbench: rules for declarative specification of languages and IDEs. OOPSLA (2010)
3. Guido H. Wachsmuth et al. A Language Independent Task Engine for Incremental Name and Type Analysis. SLE (2013)

4. Gabriél D. P. Konat et al. Language-parametric name resolution based on declarative name binding and scope rules. SLE (2012)

5. Danny M. Groenewegen et al. WebDSL: a domain-specific language for dynamic web applications. OOPSLA (2008)

6. Yellowgrass source code repository: hitps://github.com/webdsl/yellowgrass

Gabriél D. P. Konat Eelco Visser Guido H. Wachsmuth

g.d.p.konat@tudelft.nl e.visser@tudelft.nl g.h.wachsmuth@tudelft.nl . De_Ift |
Vlad A. Vergu Danny M. Groenewegen MP_./'/MCMX.C)"Q I U D e I ft University of

Technology

v.a.vergu@tudelft.nl d.m.groenewegen@tudelft.nl

http://www.SPOOFAX.org

