
Onward! Paper:

A Language Designer's Workbench!
A One-Stop-Shop for Implementation and Verification of Language Designs

Verification (Coq)!
!

Verify the correctness of the definitions!
with a !

model and proofs of type safety in Coq!
!
The generated model includes:

• Term definition with a well-formedness predicate
• A lookup relation to represent name resolution
• An inductive typing predicate
• An inductive environment-based semantics relation.

Automatic generation of new languages machinery from simple declarative rules

Theorem type_preservation : !
 forall e v ty, !
! ws_term ExpS ExpS ⇒!
! sound e ⇒ !
! eval e v ⇒ !
! wtyped e ty ⇒ !
! val_type v ty

Development (Eclipse)!
!

Easily write and edit programs!
with an !

Eclipse plugin for interactive development!
!
Spoofax extends Eclipse to connect syntactic and
semantics editor services. These services give feedback
as the programmer types; they include:
• syntactic highlighting
• code views
• program navigation through references
• semantic code completion
• error detection (unresolved variables, type errors…)

Execution (Java)!
!

Efficiently execute programs!
with a !

Java-based abstract syntax tree interpreter!
!
Implicit structural operational semantics rules from
DynSem are transformed into constructor specific rules:
 Ifz(e1, e2, e3) --> v	
 where e1 --> I(i),	
 [i = 0, e2 --> v] + [i≠0, e3 --> v]	
The evaluation methods directly derive from such rules.

public class Ifz_3_Node 	
	 extends AbstractNode implements I_Exp	
 public I_Exp _1, _2, _3;	
 public Value evaluate	
 (I_InterpreterFrame frame){	
 I_InterpreterFrame env = frame;	
 I_Exp e1 = this._1;	
 I_Exp e2 = this._2;	
 I_Exp e3 = this._3;	
 Value v1 = e1.evaluate(env);	
 if (v1 instanceof I_1_Node) {	
 I_1_Node c_0 = (I_1_Node) v1;	
 int i = c_0._1;	
 if (i != 0) {	
 return e3.evaluate(env);	
 } else {	
 if (i == 0) {	
 return e2.evaluate(env);	
 } else {	
 throw 	
	 	 	 	 	 new 	
	 InterpreterException(
	 	 	 	 	 “Premise failed”);

Inductive C := (∗ constructors ∗)  
| ParamC | FunC | FixC | AppC | IfzC …!

Inductive term : Type :=  
| Co : C # list term # term  
| Id : I # term (∗ I is identifier type ∗)!

Inductive ws_term : sort # term # Prop :=  
| Co_ws cn s ss ts :  
! sig cn = (ss,s) # (∗ sig is signature ∗)  
 Forall2 ws_term ss ts #  
! ws_term s (Co cn ts)…!

Inductive wtyped : term # term # Prop := …!

Inductive eval : env # term # val # Prop:=

Syntax!
with SDF3!

!
• The syntax of a language defines the

structure of the text representation of
valid programs.

• A parsing algorithm that generates
the abstract syntax tree from the text
source code is usually the only
definition of the syntax rules.

• SDF3 uses both templates, to define
context free grammar productions
including layout for pretty printing, and
declarative rules for disambiguation.

Name Binding!
with NaBL!

!
• The name binding rules of a language

describes how identifiers refer to their
definition.

• A resolution algorithm is usually
implicit and only appears inside the
compiler or the type checker.

• NaBL uses rules relying on the
following basic language independent
concepts to identify definitions,
references, and scopes to restrict the
visibility of definitions.

Type System!
with TS!

!
• The type system assign types to the

different elements of a programs and
describes how these elements can be
connected safely.

• A derived type checking/inference
algorithm can be used in the IDE and
the compiler to verify the static
correctness of a program.

• TS inductive rules define the type
system; these rules can refer to the
type of the definitions from NaBL.

Dynamic Semantics!
with DynSem!

!
• The dynamic semantics of a language

describe the dynamic behavior of the
programs on a concrete machine.

• Often the compiler or interpreter
implementation stands as the only
definition of the dynamic semantics.

• In DynSem, the semantics are defined
by declarative rules based on the
framework of implicitly-modular
structural operational semantics
developed by P. Mosses.

Eelco Visser1, Guido Wachsmuth1, Andrew Tolmach2, Pierre Neron1, Vlad Vergu1, Augusto Passalaqua1, Gabriël Konat1 !

 1 2

