Onward! Paper:

A Language Designer's Workbench

A One-Stop-Shop for Implementation and Verification of Language Designs

Eelco Visser!, Guido Wachsmuth!, Andrew Tolmach?, Pierre Neron, Vlad Vergu', Augusto Passalaqua’, Gabriél Konat'

1 4 Delft
TUDelft &z

Syntax

with SD

® The syntax of a language defines the
structure of the text representation of

valid programs.

F3

Name Binding
with NaBL

® The name binding rules of a language
describes how identifiers refer to their
definition.

2 Portland State

UNIVERSITY

Type System
with TS

® [he type system assign types to the
different elements of a programs and
describes how these elements can be

Dynamic Semantics
with DynSem

® The dynamic semantics of a language
describe the dynamic behavior of the
programs on a concrete machine.

e A parsing algorithm that generates °
the abstract syntax tree from the text
source code is usually the only
definition of the syntax rules. °

o SDF3 uses both templates, to define
context free grammar productions
including layout for pretty printing, and
declarative rules for disambiguation.

A resolution algorithm is usually
implicit and only appears inside the
compiler or the type checker.

NaBL uses rules relying on the
following basic language independent
concepts to identify definitions,
references, and scopes to restrict the
visibility of definitions.

connected safely.

e A derived type checking/inference
algorithm can be used in the IDE and
the compiler to verify the static °
correctness of a program.

® TS inductive rules define the type
system; these rules can refer to the
type of the definitions from NaBL.

e (Often the compiler or interpreter
implementation stands as the only
definition of the dynamic semantics.

In DynSem, the semantics are defined
by declarative rules based on the
framework of implicitly-modular
structural operational semantics
developed by P. Mosses.

® PCF.sdf3 52 = O L@ namesinab 53 = O @ ypesis R = B @ semantics.ds R = o
templates namespaces Variable type rules // binding -rules
Exp.Var = [[ID]] -binding rules Var(x) : t E env |- Var(x) --> v
Exp.App = [[Exp] [Exp]] {left} where definition of x : t where env[x] --> T(e, env'),
Exp.Fun = [Var(x) : E env' [-e --—> vV
fun [Param] (refers to Variable x Param(x, t) : t
[Exp] E env |- App(el, e2) --> v
) - Param(x, t) : Fun(p, e) : FunType(tp, te) where
] - defines Variable x of type t where p : tp and e : te E env |- el --> C(x, e, env'),
Exp.Fix = [E {x |--> T(e2, env), env'} |-
fix [Param] (Fun(p, e) : App(el, e2) : tr e --> VvV
[Exp] scopes Variable where el : FunType(tf, tr)
) and e2 : ta and tf == ta E env |-
] - Fix(p, e) : else error "type mismatch" on eZ Fun(Param(x,t),e) --> C(x,e,env)
scopes Variable
-context-free priorities Fix(p, e) : tp Ifz(el, €2, e3) --> v
Exp.App > Exp.Mul Let(x, t, el, e2) : where p : tp and e : te where el --> I(1),
> {left: Exp.Add Exp.Sub} defines Variable x and tp == te 1 =0,
> Exp.Ifz of type t in e2 else error "type mismatch" on p e2 --> v

Automatic generation of new languages machinery from simple declarative rules

Development (Eclipse)

Easily write and edit programs
with an

Eclipse plugin for interactive development

Spoofax extends Eclipse to connect syntactic and
semantics editor services. These services give feedback
as the programmer types; they include:

® syntactic highlighting

® code views

® program navigation through references

® semantic code completion

® crror detection (unresolved variables, type errors...)

O O O |)Java - pcf/examples/examplel.pcf - Eclipse SDK - /Users/augu... j™

ol A5 O R B G

s, M oLR ":L] e e = CQuick Access) I] st ’ ﬁjjava i Resource

010 \‘9\ Syntax v Analysis v Generation v

5] (=5

% Packag X — O @ *examplel.pcf & = R

= e let fac : int -> int = o)

Jir

Vhf[,’> pcf [autosound pro |€3 fix fac : int (&
» (# editor/java fun n : int (=)
» m, JRE System Library % 1fz o) —
» =, Plug-in Dependenc the“b‘nresolved L—‘
> WA lUnit 4 a else reference =
» [> editor) Eﬂ
» [y > examples

[—icons .)
» [~include n
> = lib let ack : int -> int -> int =
» (% META-INF ¢

» (% > syntax fix ack : int -> int -> int (

Pt:m-> trans fun n : int (
P;i_‘_a..'utlls fun m : int (
» [verification)

275 bui ifz m

&> build.generated.

£ bui - then m + 1

<& | build.main.xml

ﬁj build.properties e1§e

— 1fz n

then ack (m - 1) 1
else ack m (ack m (n - 1)

“Progre % — O

No operations to display at thi)

)
)

in 3

Writable ‘ Smart Insert ‘ 5:14 ‘ lfBGM of 3306M ‘@

Execution (Java)

Efficiently execute programs
with a

Java-based abstract syntax tree interpreter

Implicit structural operational semantics rules from
DynSem are transformed into constructor specific rules:

Ifz(el, e2, e3) --> v
where el --> I(1),
[1 =0, €2 --> v] + [1=0, e3 --> V]

The evaluation methods directly derive from such rules.

public class Ifz_3_Node
extends AbstractNode implements I_Exp
public I_Exp _1, _2, _3;
public Value evaluate
(I_InterpreterFrame frame){
I_InterpreterFrame env = frame;

Verification (Coq)

Verify the correctness of the definitions
with a

model and proofs of type safety in Coq

The generated model includes:
® Jerm definition with a well-formedness predicate
® A lookup relation to represent name resolution
® An inductive typing predicate
® An inductive environment-based semantics relation.

Inductive C := (% constructors =)
| ParamC | FunC | FixC | AppC | IfzC ..

Inductive term :
| Co :
| Id :

Type :=
C » list term -» term

I » term (* I 1s identifier type =)

Inductive ws_term :
| Co ws cn s ss ts :

sort » term -» Prop :=

I_Exp el = this._1; sig cn = (ss,s) » (* sig is signature =)
I_Exp e2 = this._2; Forall2 ws term ss ts -
I_Exp e3 = this._3; ws_term s (Co cn ts)..

Value vl = el.evaluate(env);
1f (vl instanceof I_1_Node) {

Inductive wtyped : term -» term -» Prop := ..

I—l—NOde c_0 = (I_1 _Node) vi; Inductive eval : env » term -» val » Prop:=
int 1 = c_0._1;
1f (1 1'=0) {
return e3.evaluate(env); Theorem type preservation :
} else { forall e v ty,
if (1 ==0) { ws_term ExpS ExpS =
return eZ.evaluate(env);
sound e =
} else {
throw eval e v =
new

Interpreterkxception(
“Premise failed”);

wtyped e ty =

val type v ty

