
Scopes Describe Frames

Static Name Binding Dynamic Memory

Frames and Heaps

Handled in a number of ways in semantic specifications:
- Lexical scope: type substitution, type environments
- Stateful references: reference types, store typings
- Structured memory: class tables

val x = 31;

val y = x + 11;

Statically resolved
variable

Handled in a number of ways in semantic specifications:
- Lexical scope: substitution, environments, de Bruijn, HOAS
- Stateful references: Mutable stores, heaps
- Structured memory: Mutable values for records, objects

val
y +

…

x 11

x 31

Dynamic lookup
of value

Uniform model

x
x 31

x

1

x
y 42
2

P

Dynamic lookup
using static
resolution path

:
T

S
x

y

l’l

:T2

S’ S’’

xx v1

S

y v2

l l’

x
S’

x
S’’

:T1

S
x

y

l’l

S’ S’’

xx

S

y

l l’

x
S’

x
S’’

We propose frames as a language-independent model for
dynamic memory. The model is based on these notions:
- Frames () and links () between frames
- Heap: a frame graph
- Dynamic lookup (): static resolution path
 interpreted relative to the “current” frame

l

letrec fac =
 fun (n : Int) : Int {
 if (n == 0) {
 1
 } else {
 n * fac(n - 1)
 } }
in fac(2)

x

1

2

fac

n

xn fac

fac

x
fac Cls

1

x
n 2

2

n

fac

fac

x
n 1

2
x

n 0

2

n nfacnnnn

Well-Bound Frame Well-Typed Frame

Static Binding matches Dynamic Behavior

Problem with Previous Approaches

Our Solution

Memory Invariants

Type Soundness Principle

Good Heap
All frames are well-bound and well-typed

:
T x

x x
x

x x

……

Garbage Collection

Lemma (Safe Removal).
For a good heap X = A ∪ B,

if nothing in B is referenced from A,
then A is a good heap

(B can be safely garbage collected).

A Uniform Model for Memory Layout in Dynamic Semantics
Casper Bach Poulsen , Pierre Néron , Andrew Tolmach , Eelco Visser1 2 3 1

Lack of uniform model Lack of uniform model

Scope Graphs [ESOP'15]

Uniform model

Nodes of scope graphs represent three basic notions
derived from the program abstract syntax tree:
- Scopes () and edges () between scopes
- Declarations ()
- References ()
- Static resolution paths ()

l

val x = 31;

val y = x + 11;

Scoped AST and
resolved scope
graph

1

2

x

yx

P

class Lst {

 hd : Int;

 tl : Lst;

}

var x = new Lst();

x.hd = 1;

x.tl = new Lst();

1 Lst 2
hd

tl

3 4
I I

hd tl

x xxLst

xLst

1

x

xhd 1

2

tl

xhd 0

2

tl null

xx x3

I

hd

x4

tl

I

x

x

BA

Unreferenced

Evaluation preserves good heap property

Good Heap Good Heap
Eval

Theorem (Type Soundness).
For a well-bound and well-typed program

in a good heap,
 evaluation gives a well-typed value and good heap

Frame slots and links correspond to
scope declarations and edges

Types of values in frame slots match
types of corresponding scope declarations

1 32

Verification Specification Architecture
Language-Independent

Scopes

Frames

Language-
Independent

Lemmas

Well-
Boundness

Well-
Typedness

Dynamic Semantics

Type Soundness

A
P
I

Language-Specific

St
at

ic
Dy

na
m

ic
Pr

oo
fs

