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Problem Goal Approach

Scope Graph Statix

Executing Statix Specifications

Declarative, executable specifications of 
type systems are complicated by name 
binding.

- Different representations for different 

binding patterns are bad for reuse of 
concepts, code, and tools.


- Executability introduces algorithmic 
concerns such as premise ordering and 
rule splitting.

- A generic model for name binding and 
name resolution.


- A way to write declarative, executable 
type system specifications using that 
model.

- Represent binding with scope graphs, 
consisting of scopes and declarations. 
Resolve names with queries over the 
graph.


- Write type systems in a constraint 
language, Statix, that supports mixing 
scope graph assertions and queries in 
rules.

- Scope graphs represent binding patterns 
as a graph of scopes and declarations, 
connected by labeled edges.


- Names are resolved by querying the 
graph. Query parameters (a regular 
expression and an order on edge labels) 
determine visibility and shadowing.

- Statix is a constraint language to specify 
type systems with syntax-directed rules.


- Rules specify assertions and queries on 
the (implicit) scope graph.


- Statix specifications have a declarative 
semantics, and are executable.
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let x : int = 7 in 
let f : int -> int = 
    fun (x:int) { x * 3 } in 
f x

let p : { x:int, y:int } = 
  { x = -1, y = 2 } in 
p.y

module A { 
  def p : bool = true 
} 
module B { 
  import A 
  def q : bool = ~p 
}
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Specifications are executed by rewriting a constraint set and a solution:
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- Constraints are solved by unification, building the scope graph, 
querying the scope graph, and rule-based simplification.


- Intermediate scope graphs may be incomplete, because of remaining 
scope graph assertions in the constraint set.


- Resolving queries in an incomplete scope graph is essential to support 
type-dependent name resolution or binding in types.

Can we soundly resolve queries in an incomplete scope 
graph? 
- A query result on an intermediate graph is sound if it also 

holds in the final graph.

- This is true if remaining constraints do not add data that 

shadows the query result.

- We (over)approximate which labeled edges may be 

added to the scopes in the intermediate graph.

- This approximation uses static rule information and 

dynamic information on the remaining constraints.

- A dynamic check ensures that scope graph queries are 

delayed if an invalidating graph extension may occur.


