
Scopes as Types
Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, Eelco Visser

Delft University of Technology

Problem Goal Approach

Scope Graph Statix

Executing Statix Specifications

Declarative, executable specifications of
type systems are complicated by name
binding.

- Different representations for different

binding patterns are bad for reuse of
concepts, code, and tools.

- Executability introduces algorithmic
concerns such as premise ordering and
rule splitting.

- A generic model for name binding and
name resolution.

- A way to write declarative, executable
type system specifications using that
model.

- Represent binding with scope graphs,
consisting of scopes and declarations.
Resolve names with queries over the
graph.

- Write type systems in a constraint
language, Statix, that supports mixing
scope graph assertions and queries in
rules.

- Scope graphs represent binding patterns
as a graph of scopes and declarations,
connected by labeled edges.

- Names are resolved by querying the
graph. Query parameters (a regular
expression and an order on edge labels)
determine visibility and shadowing.

- Statix is a constraint language to specify
type systems with syntax-directed rules.

- Rules specify assertions and queries on
the (implicit) scope graph.

- Statix specifications have a declarative
semantics, and are executable.

Binding Pattern Representation Execution

Lexical
Ordered

environment

Name-type list

Top-down
environment
construction

Structural
Records

Unordered fields

Label-type map

Interleaving of
name resolution

and type checking

Modules
Module table

Name-interface
map

Staged module
table construction
and module body

checking

let x : int = 7 in
let f : int -> int =
 fun (x:int) { x * 3 } in
f x

let p : { x:int, y:int } =
 { x = -1, y = 2 } in
p.y

module A {
 def p : bool = true
}
module B {
 import A
 def q : bool = ~p
}

1

2

x : INT

f : INT -> INT x : INT3

xx

P

P

1 p : REC(2)
x : INT

2

y : INT

p y

resolution queries

scope as type

0A : MOD(1) B : MOD(2)

1 2

P P

I A

q : BOOLp : BOOL p

resolution
query

scope graph
assertions

scope as type

scope graph
assertions, checking

subterms, and queries
are mixed in rules

type-dependent query

Scan DOI

:

: :

:

:

:

::

: :

(Let)

s ` e1 : T1 rsb sb P s
sb

: xi : T1 sb ` e2 : T2

s ` let xi = e1 in e2 : T2

(Var)
DECL(xi),P⇤,>, <l ` p : s : xj : T

s ` xi : T

xi ' xj

(xj : t) 2 DECL(xi)
t1 > t2 $ <l P

(Mod)

rsm s : xi : MOD(sm)
sm P s sm ` ¯stm ok
s ` mod xi { ¯stm } ok

(Imp)

DECL(xi),P⇤,>, <l ` p : s : xj : MOD(sm)
s I sm

s ` import xi ok

(Var’)
DECL(xi),P⇤I⇤,>, <0

l ` p : s : xj : T

s ` xi : T

$ <0
l P $ <0

l I I <0
l P

(Rec)
s ` ē : T̄ rsr sr

: x̄i : T̄

s ` { x̄i = ē } : REC(sr)

(Fld)

s ` e : REC(sr)
DECL(xi) ` p : sr

: xj : T

s ` e.xi : T

visibility and
shadowing
parameters

variable
resolution with
import edges

Specifications are executed by rewriting a constraint set and a solution:

initial
state

intm.
state

final
state* *

incomplete
scope graph

- Constraints are solved by unification, building the scope graph,
querying the scope graph, and rule-based simplification.

- Intermediate scope graphs may be incomplete, because of remaining
scope graph assertions in the constraint set.

- Resolving queries in an incomplete scope graph is essential to support
type-dependent name resolution or binding in types.

Can we soundly resolve queries in an incomplete scope
graph?
- A query result on an intermediate graph is sound if it also

holds in the final graph.

- This is true if remaining constraints do not add data that

shadows the query result.

- We (over)approximate which labeled edges may be

added to the scopes in the intermediate graph.

- This approximation uses static rule information and

dynamic information on the remaining constraints.

- A dynamic check ensures that scope graph queries are

delayed if an invalidating graph extension may occur.

