
Incremental Scannerless Generalized LR Parsing
Maarten P. Sijm∗

∗Delft University of Technology, Programming Languages group mpsijm@acm.org

Master thesis supervisors:
Prof. Dr. Eelco Visser

Jasper Denkers
Daniel A.A. Pelsmaeker

Introduction
We present the Incremental Scannerless Generalized LR (ISGLR) parsing algorithm, which combines the benefits of Incremental Generalized LR (IGLR) parsing
[4] and Scannerless Generalized LR (SGLR) parsing [3]. We implemented the algorithm as part of the Spoofax language workbench [2] as a modular extension
to the Java implementation of SGLR (JSGLR2) [1]. We achieve a major speedup compared to JSGLR2 when parsing files incrementally.

Processing Changes (Diff)

final char hs = label.charAt(0);

if (0xd800 <= hs && hs <= 0xdbff) {
return true;

} else if (Character.isHighSurrogate(hs)) {
return true;

}
return false;

}

AnyKeyboardViewBase.javaAnyKeyboardViewBase.java

final char hs = label.charAt(0);

if (0xd800 <= hs && hs <= 0xdbff) {
return true;

} else {
return Character.isHighSurrogate(hs);

}
}

AnyKeyboardViewBase.javaAnyKeyboardViewBase.java

change

····}·else·if·(Character.isHighSurrogate(hs))·{←↩
········return·true;←↩
····}←↩
····return·false;←↩
}←↩

····}·else·{←↩
········return·Character.isHighSurrogate(hs);←↩
····}←↩
}←↩

method
body

… … stmt.
list

… … if-else
stmt.

… else · if
stmt.

if · (cond.

… …

) · block
stmt.

{
←↩

·(×8)
ret.
stmt.

return · true ;

←↩
···· }

←↩ ···· ret.
stmt.

return · false ;

←↩

←↩ }

{

←↩

·(×7)

return

·

←↩ ····

internal parse node
lexical characters
layout characters
unchanged
updated
deleted
added

Upon a change by the user in the editor, the Diff component of the parser will receive a
new version of the input file and computes a character-by-character difference with the
previous version. These changes are then applied to the previously saved parse forest,
producing the Updated Forest, as shown on the right.
Since parse nodes are immutable in our implementation, a parse node that receives up-
dates to its children will be recreated (represented by the gray nodes in the updated
forest). At parse time, the parser will break down any changed nodes and try to reuse
unchanged nodes (see “Parsing Algorithm”).

Non-determinism
The character-level grammars used for SGLR parsing frequently need arbitrary length lookahead [3].
Therefore, these grammars have a higher degree of non-determinism than token-level grammars. As an
example, consider the grammar specification on the right. The graph-structured parse stack below shows
a parser in states 5 and 6 after parsing the four characters “·a··”. Now, two things can happen:

• If the parser encounters the end of the file, stack 6 reduces to the Start symbol.
• If the parser encounters an alphabetic character, it is shifted onto stack 5 and stack 6 is discarded.

In either case, this means that the created Row node can never be freely reused in a subsequent parse.
Unfortunately, this means that the number of parse nodes that can be reused is a lot less than for

IGLR parsing. It is not yet clear how to reduce non-determinism in character-level grammars.

1 2

3 5
L?

L

L

·

L

·

I+

I

a

4 6

R
L?

L

·

context-free syntax

Start = Row
Row = Item+

lexical syntax

Item = [a-z]
LAYOUT = [\]

Above: An example grammar written in SDF3.

Below: The same grammar as above, normalized.
syntax

Start = LAYOUT? Row LAYOUT?
Row = Item+
Item+ = Item+ LAYOUT? Item
Item+ = Item
Item = [a-z]

LAYOUT? =
LAYOUT? = LAYOUT
LAYOUT = LAYOUT LAYOUT
LAYOUT = [\]

component
resource
cache

unchanged
updated
new

SDF3
grammar

Parse Table
Generation

Parse
Table

Input Diff Updated
Forest

(I)SGLR
Parser

Parse
Forest Imploder AST

Input
Cache

Parse Forest
Cache

AST
Cache

The incremental parsing pipeline architecture.
Top row: executed during language development.

Middle row: executed every time that a file is parsed.
Bottom row: caches that are maintained between parses.

Parsing Algorithm
Instead of a stream of characters, the input to the parsing algorithm is a stream of parse
nodes. These parse nodes can either be internal nodes (corresponding to grammar produc-
tions) or terminal nodes (corresponding to characters).

When parsing starts, the input stream consists only of the pre-processed parse forest and
the end-of-file marker. When the parser encounters a changed or invalid parse node in the
input stream, it is broken down, meaning that its child nodes will become part of the input
stream instead. Ultimately, the parser will break down all parse nodes on the spines from
the root to the changed regions.

A

B

D E*

C

F G

Before
Node E has changed, therefore

nodes A and B are also updated
(see “Processing Changes”)

A*

B*

D E*

C

F G

After
Node D and subtree C

have been completely reused

parse stack input stream

$A

$CB

$CE*D

D $CE*

D E* $C

B* $C

B* C $

A* $

break down

break down

reduce

reduce

shift

shift

shift

Parsing times of the JSGLR2 parser and the ISGLR parser on a Java file of ± 100 kB.

Evaluation
We evaluated the ISGLR parsing algorithm with Git repositories, using the file differences
between commits as input to the parser. Preliminary results show that the incremental
parser is on average 13% slower than the JSGLR2 parser when parsing a file from scratch,
but achieves a speed-up when parsing the files incrementally. ISGLR can be up to 25×
faster than JSGLR2 when using files that are hundreds of kilobytes large.

The same incremental parsing times as in the plot below, showing the
relation between change sizes and incremental parsing time.

References
[1] Jasper Denkers. 2018. A Modular SGLR Parsing Archi-

tecture for Systematic Performance Optimization. Master’s
thesis. Delft University of Technology, Delft, The Nether-
lands. Advisor(s) Eelco Visser, Michael Steindorfer, Eduardo
de Souza Amorim. http://resolver.tudelft.nl/uuid:
7d9f9bcc-117c-4617-860a-4e3e0bbc8988

[2] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Lan-
guage Workbench: Rules for Declarative Specification of Lan-
guages and IDEs. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’10). ACM, New York, NY, USA,
444–463. https://doi.org/10.1145/1869459.1869497

[3] Eelco Visser et al. 1997. Scannerless generalized-LR parsing.
Universiteit van Amsterdam. Programming Research Group.

[4] Tim A Wagner. 1997. Practical algorithms for incremental soft-
ware development environments. Ph.D. Dissertation. University
of California, Berkeley.

http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
http://resolver.tudelft.nl/uuid:7d9f9bcc-117c-4617-860a-4e3e0bbc8988
https://doi.org/10.1145/1869459.1869497

