
Ordering Rejectable Stacks in SGLR Parsing
Generalised LR (GLR) Parsing

Use an LR parsing automaton, at
a conflict do all options in parallel
by using multiple stacks. The
stacks are shared at each level
(level = no. of input tokens
seen).  This creates a graph, the
Graph Structured Stack (GSS).

Scannerless GLR (SGLR) Parsing

Without a scanner, the input tokens are
individual characters. This makes entire
grammars closed under composition. It
does cause more conflicts in the
parser. Resolving ambiguities like
keyword-over-identifier is done with
reject rules. These exclusion rules are
one of the alternatives for a non-
terminal and eliminate the successful
parse of any other alternatives for that
non-terminal if it matches.

0 a 6 g 7

F = g 8

E = g 10 c 11

a

b

S = • a E c

S = • a F d

S = • b F c

S = • b E d

g

S = a • E c

S = a • F d

E = • g

F = • g

g

F
S = b • F c

S = b • E d

E = • g

F = • g

E = g •

F = g •

cS = b F • c S = b F c •

E dS = b E • d S = b E d •

F

dS = a F • d S = a F d •

E

cS = a E • c S = a E c •

0

1 2

4

6 7

8

10

m

l
r

Amin
B

B

A

A = v m •

B = v m •

A = v l •

B = v r •

AminB = A •

AminB = B •  {r}

S = AminB •

0

2

3

5

6

7

S

AminB

AminB

A

A

B

B

v

= • AminB

= • A

= • B     {r}

= • v l

= • v m

= • v r

= • v m

A = v • l

A = v • m

B = v • r

B = v • m

4

1

... C

D

A

a0 5

A = l 1

AminB = A 3

AandB = A
4

AandB = AminB

S

AandB

AandB

AminB

AminB

A

A

B

B

ml
r

A
and

B

AminB

B

A

A = m •

B = m •

A = l • B = r •

AandB = A •

AminB = A •

AminB = B •  {r}

AandB = AminB • {r}

S = AandB •

0

1

2

3

4

5 6
7

= • AandB

= • A

= • AminB  {r}

= • A

= • B      {r}

= • l

= • m

= • r

= • m

8

ml
r

AandB

AminB

B

A

A = m •

B = m •

A = l • B = r •

AandB = l l A •

AminB = A •

AminB = B • {r}

C = l AminB •

S = AandB •0

3

6

7

1

9
10

S

AandB

AandB

l

= • AandB

= • l l A

= • l C  {r}

AandB

AandB

C

l

C

= l • l A

= l • C  {r}

= • l AminB

AandB

C

AminB

AminB

A

A

B

B

= l l • A

= l • AminB

= • A

= • B    {r}

= • l

= • m

= • r

= • m

2

4

AandB = l C • {r}

5

l0 2 l 4 l 8

A = l 5

AminB = A 7

AandB = l l A 1

A C

DB

...

Ordering Rejectable States?

Filtering a highly ambiguous parse forest after parsing
is a very expensive way to implement reject rules
correctly. It is much cheaper to do during parsing. But
the published works on SGLR for parse-time filtering
are incomplete: First reduce on stacks with normal
states on top, then on rejectable stacks, i.e. with
rejectable states on top (rounded corners). This
ordering is not enough if multiple rejectable stacks can
influence each other. The example above parses
correctly with this method, but the example to the left
needs an additional ordering between states 3 and 4.

Ordering Rejectable Stacks!

While ordering between states looks
fairly local in the last example by using
their shared "parent" state, a minor
change to the grammar puts the
rejectable states much further away in
the automaton. But note how the
rejectable stacks now look quite different.
Only 7 can reject 1, not the other way
around, as rejects eventually shorten a
stack and contribute the reject reduction
to the link from the shared ancestor.

Two Rules and a Pre-Computed Ordering

We only need two rules to order rejectable stacks.
One is the "longer stack first" principle above, the
other is the state ordering for equal length stacks,
using the parent state information. This can be
pre-computed based on the automaton. In the 2-
page abstract you can find a more details.

v0 4 m 7

A = v m 1

B = v m 2

AminB = A
3

AminB = B

3

5

9

11

Jeff Smits, Daniel A. A. Pelsmaeker


