Ordering Rejectable Stacks in SGLR Parsing

S=.aFc S=b.Foc lF—>s:bF-c3c—>s:ch-3 Generalised LR (GLR) Parsing
p|S=-afd |, JS=b-Ed 0 <€—a— b6 <€—g— / -5
= . = . 4 11 "
SoobFe S_ % E>S=bE-d—d>S=bEd-5 X Use an LR parsing automaton, at
| ’ Fog— 8 | a conflict do all options in parallel
3 . I by using multiple stacks. The
A ﬁF—v . E = g 10 e—c— 11 stacks are shared at each level
gS=a-Fd _ __E=g- | S=afF-d—d—=>S=aFd- S (level = no. of input tokens
E=-8 I 10 seen). This creates a graph, the
F=.g S=aE-+.-c—Cc—>»S =aEc |11
| \ Graph Structured Stack (GSS).
E \
Scannerless GLR (SGLR) Parsing
S = . AminB AminB = A -« | _ _
A = . A / Without a scanner, the input tokens are
AminB = - B {r} é\;/ AminB = B - {r} |2 individual characters. This makes entire k
@2 = v g grammars closed under composition. It
= <V m ZR . .
3 - .y “% does cause more conflicts in the
B = .vm \@ = Aming - 3 parser. Resolving ambiguities like -
! keyword-over-identifier is done with :
v reject rules. These exclusion rules are I
. A=v 15 . I
A=v -l — one of the alternatives for a non- :
402" =——e-vr s terminal and eliminate the successful T
B=v - m T~ parse of any other alternatives for that
B=vyvm .| non-terminal if it matches.
Ordering Rejectable States?
S = + AandB
AandB = -+ A Aar.1dB = A 1 : : : : :
AandB = - AminB {r} 7| AninB = A - : : L Filtering a highly ambiguous parse forest after parsing
AMinG = - A - ° - is a very expensive way to implement reject rules
{ NS Wit R ' correctly. It is much cheaper to do during parsing. But
A = -m %:@&@andg = AminB - {r})3 A 1 F:. 1+ the published works on SGLR for parse-time filtering
g = KS '+ are incomplete: First reduce on stacks with normal
= +m = . : : : :
(s = nands -)4 -1 states on top, then on rejectable stacks, i.e. with

rejectable states on top (rounded corners). This

| | 2 ordering is not enough if multiple rejectable stacks can
da=1-] [Bor s iInfluence each other. The example above parses
T correctly with this method, but the example to the left
needs an additional ordering between states 3 and 4.
s = - AandB Ordering Rejectable Stacks!) el o le—1d 4 le—i—1 g L
6/AandB = - 1 1 A —AandB—>{S = AandB -)’ [
AandB = - 1C {r) While ordering between states looks :
¢ fairly local in the last example by using A=1- 5 F; g
nandB = 1 - 1 A their shared "parent” state, a minor . '
2/Aands = 1 - ¢ {r}—C—>and3 = 1 C - {r}3 change to the grammar puts the N A- !
¢ = 1 AminB rejectable states much further away in T :
" the automaton. But note how the |
AandB =11 - A AandB = 1 1 A - rejectable stacks now look quite different. AandB = 1 1 A-.'
- ! - Aning g A aing =A - |> Only 7 can reject 1, not the other way
JAminB = - B {r) é around, as rejects eventually shorten a
_ B—> AminB = B « {r}|6 : : :
A = -1 M stack and contribute the reject reduction
T e =1aming -7 to the link from the shared ancestor.
- r N J
B = +m

rl—erj Two Rules and a Pre-Computed Ordering
v
' ‘110 We only need two rules to order rejectable stacks. A <— A <—

One is the "longer stack first" principle above, the T_
el

oo
>
[
 —
o
[
=
O
o >
I 1
3 3

other is the state ordering for equal length stacks,
using the parent state information. This can be
pre-computed based on the automaton. In the 2-
page abstract you can find a more details.

University of
Technology

Jeft Smits, Daniel A. A. Pelsmaeker -i-‘ U D elft Deff

